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Abstract

Drug discovery is characterized by time-consuming, high
cost and high risk, while drug repositioning provides a rel-
atively low-cost and efficient method to rapidly discover ef-
fective treatments. Drug-disease association prediction is a
key foundation for drug repositioning, and it is an important
task to develop a more effective prediction method in the face
of limitations such as the misfit of existing model architec-
tures and data features. In this paper, a Multiple Kernel fu-
sion model based on Graph Convolutional Network (called
MKGCN) is developed for predicting drug-disease associa-
tions. The model first integrates known drug-disease associa-
tions and drug similarity and disease similarity information
to construct a heterogeneous network, then extracts multi-
layer features by Graph convolutional network (GCN). Then,
we uses the embedding features of each layer to calculate
the kernel matrix, and uses the average weighting method to
fuse the kernel matrix. Finally, Dual Laplacian Regularized
Least Squares (DLapRLS) is applied to predict new drug-
disease associations. A 5-fold cross-validation is performed
on the drug-disease association dataset from CTD (Compara-
tive Toxicogenomics Database), and the experimental results
show that MKGCN is a more effective prediction method
with significantly higher AUPR values than existing state-of-
the-art prediction methods, while it is also adaptable on other
datasets. In addition, the case study also confirmed the re-
liability of the predicted novel drug-disease associations in
terms of biological explanatory aspects.

Introduction
Currently, the research and development (R&D) of new
drugs has the characteristics of long cycle, high cost and
high risk (Scannell et al. 2012). At the same time, it also
has a high attrition rate, with most drug developments end-
ing in failure due to high toxicity or ineffectiveness (Plenge,
Scolnick, and Altshuler 2013). Despite rapid technological
advances and significant increases in R&D costs, the num-
ber of new drugs brought to market each year is decreas-
ing (Booth and Zemmel 2004). In this context, Ashburn
and Thor first proposed the “drug repositioning” approach in
2004 to explore new indications and targets for drugs already
on the market (Plenge, Scolnick, and Altshuler 2013).Due
to the significant saving of a lot of development time and
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cost, drug repositioning has attracted considerable attention
as it has addressed a development pain point in the phar-
maceutical industry. The main challenge in drug reposition-
ing is to detect the molecular target of a drug among hun-
dreds to thousands of gene products that have indirect re-
sponses to changes in target activity. However, traditional
statistical analysis methods are unable to discover the molec-
ular targets of drugs from the large number of genes.Graph
Convolutional Network (GCN) (Kipf and Welling 2016), as
a generalization of convolutional networks on graph struc-
ture, has performed well in the field of biomedical network
analysis, such as miRNA-drug resistance association predic-
tion (Huang et al. 2020), multiple drug side effect predic-
tion (Zitnik, Agrawal, and Leskovec 2018), miRNA-disease
association prediction (Li et al. 2020), etc.With this back-
ground, we will propose a drug-disease association predic-
tion model based on graph convolutional networks.

Related Work

Research status of drug repositioning.

In recent years, advances in bioassay technology have
yielded a large amount of data, such as information on
drug chemical structures, drug-targeting proteins, disease
drug associations and so on. The large publicly available
databases provide a reliable source of data for drug repo-
sitioning studies and drive the development of relevant pre-
dictive models. The first is drug repositioning approaches
based on text mining and semantic reasoning. For exam-
ple, Chen et al. (Chen, Ding, and Wild 2012) proposed a
method based on semantic connection networks to predict
drug-target associations. The next approach is the method of
using network models, such as Wu et al. (Wu et al. 2013),
who used the drug-disease heterogeneous network model to
identify the close connection module between drugs and dis-
eases, thereby extracting potential drug-disease association
information for drug repositioning.Finally, machine learning
technology has been widely used to develop more accurate
drug disease association prediction models. Kai Yang et al.
proposed a method called HED to predict potential associa-
tions between drugs and diseases based on the drug-disease
heterogeneous network (Yang et al. 2019).



Research status of deep learning.
Deep learning is an important branch of machine learning,
which has been widely used in natural language processing,
computer vision, reinforcement learning and other aspects.
Its advantage is that it can mine complex structural relation-
ship information between input features and output deci-
sions from large-scale data. The application of deep learn-
ing in drug discovery and molecular informatics is still in
its infancy, but it has shown great potential. Aliper and Plis
use deep neural networks (DNN) to analyze gene expression
profile data to predict treatment categories of drugs (Aliper
et al. 2016). The experimental results show that the classifi-
cation accuracy of DNN exceeds that of SVM, which indi-
cates that deep learning is a useful tool in the field of drug
development.Hu et al. (Hu et al. 2019) introduced a convo-
lutional neural net-work model to unveil drug-target interac-
tions.Zeng et al. (Zeng et al. 2019) used multi-modal deep
autoencoder and variational autoencoder models to discover
drug-disease associations.

Research status of GCN.
As a special deep neural network structure, Convolutional
Neural Network (CNN) can effectively reduce the complex-
ity of traditional neural networks and is mainly used to pro-
cess structured data such as images. Due to unsatisfied di-
mensional consistency and sequence order, the traditional
convolution on grid structures cannot be applied directly
to graphs. By studying the generalization of convolution
operators on non-Euclidean structured data, a graph con-
volution network (GCN)(Kipf and Welling 2016) adapted
to graph structures was finally generated. The graph con-
volutional network captures structural information of the
graph through messages passing between the nodes of the
graph and maintains high interpretability. It has shown
convincing performance in biomedical network analysis,
such as microRNA (miRNA)-disease association prediction
(Huang et al. 2020), multidrug side effect prediction (Zitnik,
Agrawal, and Leskovec 2018) and miRNA-drug resistance
association prediction (Li et al. 2020).

Method
Problem Description
In this paper, diseases and drugs are represented as two kinds
of nodes in the network, the node set of Nr drugs is denoted
by R = {r1, r2, ..., rNr}, and the node set of Nd disease is
denoted by D = {d1, d2, ..., dNd

}. The edges in the network
represent the relationship between the disease and the drug,
which is represented by the adjacency matrix Y ∈ RNr×Nd ,
where Yij = 1 means that the drug is related to the disease,
and Yij = 0 means that the relationship is unknown. The
model prediction task is to obtain a prediction matrix F∗ of
the same size as Y for discovering new disease-drug associ-
ations.

Model Architecture
We build a graph convolutional network-based multi-kernel
fusion model (MKGCN) for predicting drug-disease asso-
ciations. The model is based on the heterogeneous network

Drug Disease Association Sparsity

269 598 18416 0.1145

Table 1: Statistics for the dataset

of diseases and drugs, extracts multi-layer embedded fea-
tures through GCN, calculates the kernel matrix through the
embedded features of each layer and performs weighted fu-
sion, and finally applies the dual Laplacian regularized least
square method (DLapRLS) to predict potential the drug-
disease association, the algorithm flow chart is shown in Fig-
ure 1.

Construction of the heterogeneous network
The data set used in this article comes from the research of
Wen (Zhang et al. 2018a). The basic information of the data
set is shown in Table 1, which contains 18,416 disease-drug
associations between 269 drugs and 598 diseases. The asso-
ciation information comes from the CTD database (Davis
et al. 2017). In this paper, the drug-disease association ma-
trix is defined as Y ∈ RNr×Nd .

This paper mainly calculates the similarity based on the
target protein characteristics of the drug, and combines it
with the drug Gaussian kernel similarity to construct the
drug similarity kernel.

Firstly, the target protein similarity of the drug is calcu-
lated, and the drug is encoded into a binary feature vec-
tor, where each element indicates whether the corresponding
feature exists. In this paper, the Jaccard index (Zeng et al.
2019) is used to calculate the target protein similarity of the
drug, and the calculation formula is as follows:

Sr
ij =

|xi ∩ xj |
|xi ∪ xj |

, (1)

where |xi ∩ xj | represents the number of times that the ele-
ments in xi and the corresponding elements in xj are both
equal to 1, and |xi ∪ xj | represents the number of times that
the elements in xi or the corresponding elements in xj are
equal to 1.

The Gaussian interaction profile kernel similarity between
drugs is then calculated, which is used to supplement the
missing term of target protein similarity.

GR (ri, rj) = exp
(
−ηr

∥∥Yri − Yrj

∥∥2) , (2)

where ydi represents the i-th row in the adjacency matrix,
that is, the interaction spectrum of the drug ri, and ηr rep-
resents the normalized nuclear bandwidth (Van Laarhoven,
Nabuurs, and Marchiori 2011), defined as follows:

ηr =
η′r(

1
Nr

∑Nr

i=1 ∥Yri∥
2
) , (3)

where ηr is the raw bandwidth.
The comprehensive drug similarity Kr

s of two drugs ri, rj
is defined as follows:

Kr
s (ri, rj) =

{
Sr
ij+GR(ri,rj)

2 , if Sr
ij ̸= 0

GR (ri, rj) , otherwise
(4)



Figure 1: Algorithm flowchart

Figure 2: Breast tumor DAG graph structure

Similarly, the disease similarity kernel is constructed by
combining the semantic similarity kernel Gaussian kernel
similarity of the disease.

Each disease can be represented by a Directed Acyclic
Graph (DAG) through standardized mapping of disease
names through the Medical Subject Headings (MeSH). Each
disease has one or more addresses in the DAG graph, and the
address of each disease child node is jointly represented by
the addresses of the parent node and the child node. For ex-
ample, the DAG graph structure of the disease breast tumor
is shown in Figure 2.

According to the method proposed by Cui (Wang et al.
2010), the disease-to-disease similarity calculation is based
on the DAG structures of the two diseases. Use DAG(d) =
{N (d), E(d)} to represent the hierarchical relationship of

diseases, where N (d) is the node set containing d and its
ancestors, and E(d) is the set of direct connections from the
parent node to its child nodes. Based on this DAG structure,
the contribution of node n in DAG(d) to the semantic value
of disease d is

Cd(n) =

{
1 if n = d

max {∆ ∗ Cd (n
′) | n′ ∈ children of n} if n ̸= d

,

(5)
where ∆ is a contribution factor between 0 and 1, which is
set to 0.5 here. Define the semantic value of the disease as
DV (d) =

∑
n∈N (d) Cd(n). According to the assumption

that the more common ancestors, the higher the semantic
similarity, use equation 6 to calculate the semantic similarity
between diseases di and dj :

Sd
ij =

∑
n∈N (di)∼N (dj)

(
Cdi

(n) + Cdj
(n)

)
DV (di) + DV (dj)

(6)

The Gaussian interaction profile kernel similarity between
diseases is then computed:

GD (di, dj) = exp
(
−ηd

∥∥Ydi
− Ydj

∥∥2) , (7)

where ydi represents the i-th column in the adjacency matrix,
that is, the interaction spectrum of the disease di, and ηd rep-
resents the normalized kernel bandwidth (Van Laarhoven,
Nabuurs, and Marchiori 2011), defined as follows:

ηd =
ηd(

1
Nd

∑Nd

i=1 ∥Ydi
∥2
) , (8)

where ηd is the raw bandwidth.



Figure 3: Schematic diagram of adjacency matrix composi-
tion

The comprehensive drug similarity Kd
s of two diseases di,

dj is defined as follows:

Kd
s (di, dj) =

{
Sd
ij+GD(di,dj)

2 , if Sd
ij ̸= 0

GD (di, dj) , otherwise
(9)

In order to integrate network information, a heteroge-
neous network H including drug-disease association net-
work Y ∈ RNr×Nd , drug similarity network Kr

s, and dis-
ease similarity network Kd

s is constructed, represented by an
adjacency matrix A.

A =

[
Kr

s Y
Y T Kd

s

]
(10)

The relationship between the adjacency matrix A and the
three kinds of incidence matrices is shown in Figure 3.

Combined Kernel on Graph Embedding
A graph convolutional network (GCN) is a multilayer
connected neural network architecture for learning low-
dimensional representations of nodes from graph struc-
tures.Each layer of the GCN aggregates neighbor informa-
tion through direct links of the graph, and the reconstructed
embeddings are used as inputs for the next layer. For the ad-
jacency matrix A of the heterogeneous network H defined
above, the corresponding GCN can be defined as:

H(l) = f
(
H(l−1), A

)
= σ

(
D− 1

2AD
1
2H(l−1)W (l−1)

)
(11)

where H(l) is the l-layer embedding of nodes, where
l = 1, ..., L;D = diag

(∑Nr+Nd

j=1 Ai,j

)
is the diagonal

node degree matrix of A; W (l)∈ R(Nd+Nm)×kl is a weight
matrix for the l-th neural network layer and kl is the di-
mensionality of embeddings of l-th layer GCN; σ (·) is a
non-linear activation function.In this paper, ReLU (modi-
fied linear unit) is used as the activation function. For the
first layer of GCN, the initial embedding H(0) is constructed

as follows:

H(0) =

[
0 Y
Y T 0

]
(12)

The multi-layer GCN model captures different structural
information of heterogeneous networks and can compute
multiple embeddings. For example, the first layer captures
direct link information, and higher layers capture multi-hop
neighbor information (higher-order proximity) by iteratively
updating the embeddings (Van Laarhoven, Nabuurs, and
Marchiori 2011).Since the embeddings at each layer repre-
sent different information, in this paper, the embeddings at
each layer are used as different feature vectors to compute
multiple kernel matrices.

For the embedding of each layer Hi(i = 1, ..., L), we
can divide it to two parts, the first Nr lines are used as drug
embeddings Hr

i , and the last Nd lines are used as microbe
embeddings Hd

i . The kernel matrix for each layer of drug
and disease embedding was calculated using the Gaussian
interaction profile (GIP) as follows:

Kr
hl

= exp
(
−γhl

||Hr
l (i)−Hr

l (j) ||2
)

(13)

Kd
hl

= exp
(
−γhl

||Hd
l (i)−Hd

l (j) ||2
)

(14)

where Hr
i (i) and Hd

i (i) are profiles of the i-row in the l-
layer drug and microbe embeddings; rhl

denotes the corre-
sponding bandwidth.

Since different embeddings represent various structural
information, the kernel composed of different embeddings
will represent the similarity between nodes from differ-
ent views. Combined with existing similarity matrices,
we have the kernel sets of drug feature space Sr =
{Kr

s ,K
r
h1
, ...,Kr

hL
} and microbe feature space Sd =

{Kd
s ,K

d
h1
, ...,Kd

hL
}.

To improve the prediction performance, the above ker-
nel matrices are combined in two spaces separately by a
weighted sum method. The combined kernels are defined as
follows:

Kr =

L+1∑
i=1

ωr
i S

r
i (15)

Kd =

L+1∑
i=1

ωd
i S

d
i (16)

where Sr
i and Sd

i are ith kernels in drug and microbe kernel
set, ωr

i and ωd
i are the corresponding weight of each kernel.

Here, we set ωr
i = ωd

i = 1
l+1 .

Classification Prediction Algorithm
In this paper, we apply the dyadic Laplace regularized least
squares (DLapRLS) (Ding, Tang, and Guo 2020) framework
to predict associations. DLapRLS is a model based on two
eigenspace kernel matrices and aims to find the optimal pre-
diction matrix F ∗ by minimizing the following objective
function:

minJ = ||Krαr + (Kdαd)
T − 2Ytrain||2F (17)



where || · ||2F is the Frobenius norm, Ytrain∈RNr×Nd is the
adjacency matrix for microbe-drug associations in the train-
ing set; αr∈RNr×Nd and αT

d ∈RNr×Nd are trainable ma-
trices; Kr∈RNr×Nr and Kd∈RNd×Nd are fused kernels in
two feature spaces respectively.

To minimize the distance between the potential feature
vectors of two adjacent drugs or adjacent diseases, add graph
regularization for drugs and diseases, respectively:

min
αr

n∑
i,j

Kr (i, j) ||αi
r − αj

r||2 = tr
(
αT
r Lrαr

)
(18)

min
αd

n∑
p,q

Kd (p, q) ||αp
d − αq

d||
2 = tr

(
αT
d Ldαd

)
(19)

where i, j = 1, 2, ...Nr, p, q = 1, 2, ..., Nd; αi
r is the i-

th row vector of αr and αp
d is the p-th row vector of αr;

Lr∈RNr×Nr and Ld∈RNd×Nd are the normalized Lapla-
cian matrices, respectively:

Lr = D
− 1

2
r ∆rD

1
2
r , ∆r = Dr −Kr (20)

Ld = D
− 1

2

d ∆dD
1
2

d , ∆d = Dd −Kd (21)

where Dr = diag
(∑Nr

j=1 Kr (i, j)
)

and Dd =

diag
(∑Nd

j=1 Kd (i, j)
)

.
The final objective function is:

minJ = ||Krαr + (Kdαd)
T − 2Ytrain||2F

+λrtr
(
αT
r Lrαr

)
+ λdtr

(
αT
d Ldαd

) (22)

The prediction matrix F ∗ of the drug-disease association
from the two feature spaces is as follows:

F ∗ =
Krαr + (Kdαd)

T

2
(23)

Optimization
There are two types of parameters in the model that need
to be optimized. The first category is the GCN parameters,
which are optimized by the Adam optimizer (Kingma and
Ba 2014) to minimize the loss function; the second category
is the parameters of DLapRLS, where the iteration function
is obtained directly by calculating the partial derivatives.

In optimizing αr, first assume that αr is known, and then
calculate the partial derivative of the objective function with
respect to αr:

∂J

αr
= 2Kr

(
Krαr + αT

d K
T
d − 2Ytrain

)
+ 2λrLrαr (24)

By letting ∂J
αr

= 0,we can obtain:

αr = (Krαr + λrLr)
−1

Kr[2Ytrain − αT
d K

T
d ] (25)

Similarly, we calculate the partial derivative of the loss
function with respect to αd as follows:

∂J

αd
= 2Kd

(
Kdαd + αT

r K
T
r − 2Ytrain

)
+2λdLdαd (26)

By letting ∂J
αd

= 0,we can obtain:

αd = (KdKd + λdLd)
−1

Kd[2Ytrain − αT
mKT

m] (27)

The inputs to the model are the known association ma-
trix Y and the similarity matrices Kr

s and Kr
d of drugs and

diseases. In training, firstly, all trainable parameters are ran-
domly initialized, and the heterogeneous network is con-
structed according to the input matrix to initialize the em-
bedding H(0). In each iteration, the GCN computes the em-
bedding of each layer of the node by forward propagation
and calculates the kernel matrix based on the embedding;
then multiple kernel matrices are fused in each of the two
spaces; then the embedding of the GCN is updated by back
propagation and the parameters of DLapRLS are updated by
iterative functions. The prediction matrix F ∗ is output after
iterative update.

Results
Experimental setting
The k-fold cross validation is widely used to evaluate the
predictive performance of a model. In the cross-validation
process, the correlated dataset is first divided into k parts
randomly and equally, and one of the parts is selected as the
test set each time, and the other k-1 parts are used as the
training set to train and test the model for a total of k valida-
tions. In this paper, a 5-fold cross-test is used and we use two
evaluation indicators: the area under thereceiver operating
characteristic curve (AUC) and the area underthe precision
recall curve (AUPR).

Parameters evaluation
In the study of this paper, the main parameters that affect the
prediction effect of the model are λr, λd and γhl (l=1,2,...,L).
The parameter γhl controls different Kr

hl and Kd
hl, and fixes

λr and λd, when γhl is in 2−3,..., 20,..., 23 changes, AUPR
changes accordingly. Figure 4, Figure 5, and Figure 6 re-
spectively show the impact of changes in γhl (l=1,2,3) on the
prediction performance. It can be observed that the predic-
tion performance of the model is poor when γhl is large. For
γh1, AUPR decreases with the increase of γh1, and reaches
the optimal value at the minimum value of γh1. When γh2
and γh3 are small, there is little change, but overall AUPR
also decreases with the increase of its value. In order to ob-
tain the best prediction effect, this paper selects γh1 = 2−3,
γh2 = 2−2, γh3 = 2−3 as model parameters.
λr and λd represent the weights of graph regularization

items in DLapRLS, with the highest AUPR as the parameter
selection index, as shown in Table 2, when λr = 2−2, λd =
2−1, AUPR reaches a maximum value of 0.5379.

Evaluation of the role of each part of the model
The MKGCN model is based on graph convolutional net-
works, where different layers of GCNs can yield different
node embeddings, and then multiple kernel matrices based
on different embedding information. This paper discusses
experimentally the effect of kernel matrices generated by
different layers and known similarity matrices, as well as the



Figure 4: AUPR of the model under different γh1

Figure 5: AUPR of the model under different γh2

Figure 6: AUPR of the model under different γh3

λr
λd

2−3 2−2 2−1 20

2−3 0.5167 0.5257 0.5291 0.5274

2−2 0.5201 0.5201 0.53790.53790.5379 0.5375

2−1 0.5180 0.5312 0.5373 0.5368

20 0.5144 0.5277 0.5333 0.5318

Table 2: AUPR values at different λr and λd

difference between single and multiple kernels for modali-
ties.

The model uses a three-layer GCN, and research (Yu
et al. 2021) shows that the performance of the GCN en-
coder decreases as the number of convolution layers in-
creases. hl+MKGCN denotes the prediction using the ker-
nel matrix computed by the MKGCN model on the lth layer
(l=1,2,3) of embeddings. In addition, to verify the effective-
ness of the graph convolution in extracting features, the pre-
diction is performed directly using the original similarity
matrices Kr

s and Kd
s using the s+MKGCN representation.

mean+MKGCN represents the fusion of the above four ker-
nel matrices by assigning average weights to them.

Models AUPR AUC

h1+MKGCN 0.5127 0.8548
h2+MKGCN 0.4659 0.8355
h3+MKGCN 0.4119 0.8079
s+MKGCN 0.3954 0.7875

mean+MKGCN 0.53790.53790.5379 0.86090.86090.8609

Table 3: Prediction effects of models based on different ker-
nels

The AUCs and AUPRs of all models under 5-fold cross-
check are shown in Table 3. In the single kernel models,
the AUC and AUPR of h1+MKGCN and h2+MKGCN are
higher than those of h3+MKGCN and s+MKGCN, which
means that the kernel matrices generated by the first and
second layers of the GCN contain more information than
the third layer and the known similarity matrix and there-
fore achieve better results. It can be seen that the kernel ma-
trix calculated based on the GCN embedding is an effective
way to describe the relationships between the nodes and can
provide additional information to the model to improve the
prediction. On the other hand, comparing the MKGCN with
the single kernel model, the MKGCN outperforms the sin-
gle kernel model, indicating that the multi-core model can
combine more information for prediction. Therefore, in the
next experiments, the average weighting method is chosen
to construct the MKGCN model in this paper.



Comparative experiments
To further evaluate the predictive performance of the
MKGCN model, this paper compares MKGCN with two
more advanced drug-disease association prediction meth-
ods. The two methods are SCMFDD (Zhang et al. 2018b)
and LAGCN (Yu et al. 2021) respectively. As shown in Ta-
bles 4, the three methods have similar results in terms of
AUC metrics, but in terms of AUPR metrics, MKGCN has a
significant advantage of up to 0.5379, compared to 0.2399
and 0.3008 for SCMFDD and LAGCN respectively, with
MKGCN improving 124.2% and 78.8% relative to the two
methods respectively. It can therefore be seen that the pre-
diction performance of the GCN-based method outperforms
that of the matrix decomposition-based method, indicating
that the GCN can aggregate feature information of the net-
work topology well. And also using multiple convolutional
layers of GCN to embed information, the multi-core learn-
ing approach works better than the attention mechanism, in-
dicating that the multiple sources of information provided
by the kernel matrix can significantly improve the predic-
tion ability of the model.

Models AUPR AUC

SCMFDD 0.2399 0.8619
LAGCN 0.3008 0.8731
MKGCN 0.53790.53790.5379 0.86090.86090.8609

Table 4: Prediction results under 5-fold cross-validation of
different methodological models

To illustrate the fitness of MKGCN on different datasets,
a 5-fold cross-validation was performed on three additional
datasets (Fdataset (Gottlieb et al. 2011), Cdataset (Luo et al.
2016) and DNdataset (Martinez et al. 2015)) in this paper.
Among them, Fdataset includes 593 drugs from the Drug-
Bank database (Wishart et al. 2018), 313 diseases and 1933
known associations from the OMIM dataset (Hamosh et al.
2002); Cdataset contains 663 drugs collected from Drug-
Bank, 409 diseases from the OMIM database and 2352
known drug-disease associations; DNdataset contains 1490
drugs from DrugBank, 4516 diseases and 1008 known drug-
disease associations from Disease Ontology (Schriml et al.
2012). Information on the dataset is shown in Tables 5.

Datasets Drugs Diseasess Associations Sparsity

Our dataset 269 598 18416 0.11448
Fdataset 593 313 1993 0.01041
Cdataset 663 409 2352 0.00867

DNdataset 1490 4516 1008 0.00015

Table 5: Statistical information on the datasets

On Fdataset, MKGCN (AUPR: 0.5234, AUC: 0.9001)
achieved the best results, with a significant improvement
over SCMFDD (AUPR: 0.0259, AUC: 0.7745) and LAGCN
(AUPR: 0.0830, AUC: 0.7689); on Cdataset, the MKGCN

model with AUPR and AUC of 0.6307 and 0.9160, re-
spectively, predicted better than SCMFDD (AUPR: 0.0235,
AUC: 0.7903) and LAGCN (AUPR: 0.0957, AUC: 0.7615);
on DNdataset, the AUPR and AUC of the MKGCN model
were were 0.3662 and 0.8831, with AUPRs 0.2562 and
0.1106 higher than those of SCMFDD (AUPR: 0.1100,
AUC: 0.9413) and LAGCN (AUPR: 0.2556, AUC: 0.7468),
respectively. The relevant results are shown in Table 6.

Datasets Models AUPR AUC

Fdataset SCMFDD 0.0259 0.7745
LAGCN 0.0830 0.7689
MKGCN 0.52340.52340.5234 0.90010.90010.9001

Cdataset SCMFDD 0.0235 0.7903
LAGCN 0.0957 0.7615
MKGCN 0.63070.63070.6307 0.91600.91600.9160

DNdataset SCMFDD 0.1100 0.94130.94130.9413
LAGCN 0.2556 0.7468
MKGCN 0.36620.36620.3662 0.8831

Table 6: Prediction results of different methodological mod-
els on various datasets

The above experiments illustrate that the MKGCN model
has good performance in drug-disease association prediction
and can be generalised to different datasets.

Case Study
To illustrate the predictive effect of the model biologically,
the MKGCN model was constructed using the entire as-
sociation dataset, and then the known drug-disease asso-
ciations in the prediction matrix were removed and the
10 drug-disease associations with the highest prediction
scores were selected. The prediction results are shown in
Tables 7, of which six associations have biomedical sup-
port in the literature. For example, morphine, currently used
clinically primarily for analgesia and cough suppression,
was predicted to treat precursor cell lymphocytic leukaemia,
while the antipsychotic drug risperidone, was predicted to
treat angioedema, and the anti-folate antineoplastic agent
methotrexate, was predicted to treat liver failure.

Associated diseases for carbamazepine and associated
drugs for breast tumours were then examined, with the re-
sults shown in Tables 8, where the percentage of associations
with literature support was 80% and 100% respectively. Car-
bamazepine is an anticonvulsant drug used primarily for
the treatment of epilepsy and neuropathic pain, and predic-
tions found associations with coagulation disorders, squa-
mous cell carcinoma, and nephrogenic uremic syndrome as
well. Breast cancer is a common malignancy in women, and
MKGCN predicts an association with drugs such as adri-
amycin and vitamin A acid.

Discussion and conclusion
Determining drug-disease associations provides important
information for new drug development, however, the process



Drug Disease Evidence

Morphine Leukaemia-Lymphoma Y
Promethazine Coagulation disorders N
Risperidone Angioedema Y
Methotrexate Liver Failure Y

Phenytoin Solitary neuropathy N
Colotine Neurodegeneration Y

Quetiapine fumarate Leukaemia-Lymphoma Y
Sertraline Neurodegeneration Y

Valproic acid Hyperhidrosis N
Sertraline Nephrogenic Enuresis N

Table 7: Top 10 drug-disease associations predicted by
MKGCN

of determining drug-disease associations by wet-lab meth-
ods is very time-consuming and expensive. Currently, many
drug-disease relationships are still unknown and developing
a new method to predict drug-disease associations that have
not yet been discovered is a very important and urgent topic.
In this paper, a multicore fusion model (called MKGCN)
based on graph convolutional networks is developed for pre-
dicting drug-disease associations.

The advantage of multicore fusion is to improve the pre-
dictive power of the prediction model by combining multi-
core information to fully describe the relationship between
samples. However, in traditional multicore learning algo-
rithms, the kernel matrix is constructed by extracting fea-
tures from multiple known sources of information in the
sample itself, and this approach is not suitable for samples
with fewer sources of information. Therefore, unlike tradi-
tional multicore learning, this paper uses GCN to construct
multiple kernel matrices based on the embedding of different
layers of networks to solve the above problem and achieve
the purpose of making full use of multiple information.

The experimental results of cross-validation show that
MKGCN is an effective prediction method, especially when
compared with existing models, MKGCN achieves the best
AUPR values on multiple data sets. In addition, the case
study also confirmed the reliability of the predicted poten-
tial drug-disease associations in terms of bio-interpretation.

In summary, the present model can be used as an effective
method for predicting drug-disease associations, providing
new ideas for drug repositioning calculations, and providing
computational aids for clinical trials.

In future work, in-depth research and improvement can be
conducted in the following aspects.

• Selection of plausible negative samples: there is a lack
of drug-disease negative pairs in current publicly avail-
able databases and published literature, and drug-disease
pairs that are not associated by default in prediction ex-
periments may also have associations that are not ex-
perimentally validated, thus affecting the prediction ef-
fectiveness of the model. Further exploration of effec-
tive methods to identify negative samples in combination
with more pathology knowledge and clinical information
is needed.

Drug Disease Evidence

Carbamazepine

Coagulation disorders Y
Squamous cell carci-
noma

Y

Nephrogenic Urogeni-
tal Disease

Y

Hot flushes N
Hyperammonia Y
Hyperthyroidism Y
Myopathy Y
Nephrosclerosis Y
Neurodegeneration Y
Gastrointestinal signs
and symptoms

N

Disease Drug Evidence

Breast neoplasms

Adriamycin Y
Vitamin A acid Y
Algocytidine Y
Vincristine Y
Mitoxantrone Y
Sorafenib Y
Dexamethasone Y
Tamoxifen Y
Prednisone Y
Quercetin Y

Table 8: MKGCN predicts the top 10 related diseases (re-
lated drugs) with the highest score for a drug (disease)

• Integration of feature information from multiple data
sources: features such as chemical structure, side effect
information, and interactions of drugs can be used to con-
struct similarity networks. Similarly, more information
on disease features can be extracted based on the asso-
ciation of diseases with microorganisms, genetic infor-
mation of diseases, etc. Therefore, adding more feature
information can be considered afterwards to construct
more accurate and better similarity networks of diseases
and drugs.

• Optimization of multiple kernel fusion parameters:
The ablation experiment found that each kernel matrix
has different effects on the prediction effect. In this pa-
per, considering the simplicity of model calculation, the
average weighting method is directly used to fuse each
kernel matrix. The idea of attention mechanism can be
borrowed to change the weight coefficients in multicore
fusion into adaptive parameters, so as to improve the pre-
diction effect of the model.
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